On the Uniqueness of the Selection Criterion in Neighbor-Joining
نویسنده
چکیده
The Neighbor-Joining (NJ) method of Saitou and Nei is the most widely used distance based method in phylogenetic analysis. Central to the method is the selection criterion, the formula used to choose which pair of objects to amalgamate next. Here we analyze the NJ selection criterion using an axiomatic approach. We show that any selection criterion that is linear, permutation equivariant, statistically consistent and based solely on distance data will give the same trees as those created by NJ.
منابع مشابه
Fe b 20 06 WHY NEIGHBOR - JOINING WORKS
We show that the neighbor-joining algorithm is a robust quartet method for constructing trees from distances. This leads to a new performance guarantee that contains Atteson’s optimal radius bound as a special case and explains many cases where neighbor-joining is successful even when Atteson’s criterion is not satisfied. We also provide a proof for Atteson’s conjecture on the optimal edge radi...
متن کاملCongestion estimation of router input ports in Network-on-Chip for efficient virtual allocation
Effective and congestion-aware routing is vital to the performance of network-on-chip. The efficient routing algorithm undoubtedly relies on the considered selection strategy. If the routing function returns a number of more than one permissible output ports, a selection function is exploited to choose the best output port to reduce packets latency. In this paper, we introduce a new selection s...
متن کاملEffects of Selection on Genetic Parameters of Secale montanum Based on Seed Storage Protein Marker
Secale montanum is one of the important perennial grasses growingnaturally in arid to semiarid pastures and rangelands, with a typical Mediterraneanclimate, in northern and western Iran at altitudes of 800-2900 m. In this paper, seedstorage protein profiles of nine wild populations of S. montanum from differentregions of Iran and their phenotypically superior progenies as well as a multi-origin...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Classification
دوره 22 شماره
صفحات -
تاریخ انتشار 2005